Part – 1 :

Q(1):

I don't have the exact question, but it was something like this:

What makes airplanes go up (fly)?

Answer:

Due to the difference in the air speed above and below the wing of the airplane, where the speed above is higher than below, creating less pressure above the wing as compared to the pressure below. The difference in pressure creates uplift force.

Q(2):

What is the minimum runway blast pad width in meters for a design aircraft C-IV (answer format: one digit to the right of the decimal point, e.g. 255.0)

Answer:	60.0
---------	------

. See Straggers	* * *	the second second	Airplane D	asign Group	the states	
Item	I.	п	щ	· IV	. v	VI
Runway Width	100 ft	100 ft	100 ft	150 ft	150 ft	200 ft
	30 m	30 m	30 m	45 m	45 m	60 m
Runway Shoulder Width	10 ft	10 ft	(20 ft)	(25 ft)	35 ft	· 40 ft
	3 m	· 3 m	6 m	(7.5 m)	10.5 m	12 n
Runway Blast Pad Width	120 ft.	.:120 ft	140 ft	. 200 ft	- 220 ft	280 ft
	36 m	³ 36 m ⁻	42'm '	60 m)	66 m	84 n
Runway Blast Pad Length	100 ft	150 ft	200 ft	200 ft -	400 ft	400 ft
	30 m ·	45 m	60 m .	· 60 m.	120 m	120 n
Runway Safety Area Width	500 ft :	500 ft	500 ft	500 ft	- 500 ft	500 f
Reacting Series, Income Series	. 150 m · ·	150 m	150 m	150 m	150 m	150 n
Runway Safety Area Length	1,000 ft	1,000 ft	1,000 ft	1,000 ft	1,000 ft	1,000 fi
Beyond RW End	300 m	300 m	300 m	300 m	300 m	300 n
Runway Object Free Area	800 ft	800 ft	800 ft	800 ft	800 ft	800 f
realized colors a realized	A 10	0.40	0.40	240	240	240 -

Q(3):

tangents	at the PVI are minus 0	vertical curve in meters for a design aircraft D-IV given the 0.75% and plus 0.75% (answer format: whole numbers without a whole number, e.g. 175)
Answer:	450	

Figure 18-3b Longitudinal grade limitations for aircraft approach categories C and D. (Source: *Airport Design*, FAA Advisory Circular 150/5300-13, Changes 1–4, September 29, 1989.)

min Length of Vertical Curve = 300(0.75 + 0.75) = 450 m

Q(4):

Give the magnetic azimuth of single runway is 76, what are runway numbers of this runway for each of the two ends of runway (answer format: whole numbers with no decimal point and symbol and "&" between the two numbers with no spaces before or after the "&", e.g., 2&13)

Answer: 8 & 26

 $76 \approx 80$ (Rounded to nearest 10)

First Number = $\frac{80}{10} = 8$

Second Number = 8 + 18 = 26

What is the required runway length of a design aircraft of Beech B99 at location with elevation at sea level and mean daily maximum temperature of the hottest month of the year is 95 degree Fahrenheit (answer in whole numbers without decimal point and rounded to upper/higher 100ft, e.g. 2200)

Answer:

4300

Q(6):

Given expected daily traffic in the table below, determine the IFR hourly capacity for runway configuration number 4 in table 16.3, p. 519 in the textbook (answer format: whole number without decimal point, e.g., 98)

	Expected typical daily number of aircrafts
Class A: Small single –engine aircrafts 12,500lb or less	40
Class B: Small multiengine aircrafts, 12,500lb or less and learjets	60
Class C: large aircrafts, 12,500lb an up to 300,000lb	80
Class D: heavy aircraft, more than 300,000lb	20

$$\%C = \frac{80}{40+60+80+20} * 100\% = 40\%$$

 $\%D = \frac{20}{40 + 60 + 80 + 20} * 100\% = 10\%$

$$Mix Index = \%C + 3(\%D) = 40 + 3(10) = 70$$

Answer: 56

	Mix Index (Percent)	Capa (Opera		Annual Service Volume
Runway Use Configuration	(C + 3D)	YR	IFR	(Operations/yr
1.	0-20	VFR	59	230,000
		74	57	- 195,000
	51-80	. 63	56	205,000
	814120	(55)	(53)	210,000
	121-180	ST	50	240,000
2.	0-20	197	59	355,000
	21-50	(145)	57	275,000
700 to 2499 it*	5180	121	56	260,000
-¥	81-120	105	59	285,000
	121-180	94	60	340,000
3.	0-20	295	62	385,000
700 to 2499 ft	21-50	219	63	310,000
	51-80	184	65	290,000
2500 to 3499 fr	81-120	161	70	315,000
	121-180	146	75	385,000
C Altore,				
4.	0-20	98	59	230,000
	21-50	77	57 -	200,000
· // .	51-80	77	56	215,000
. //	81-120	76	59	225,000
	121-180	72	60	265,000

Q(7):

Airport demand for passenger transfers depends mainly on

- O a. Population and level of education
- O b. Population and production of goods
- O c. Population and being a hub airport
- 🖲 d. Using the airport as a hub airport by airlines
- e. Population and economic character

Q(8):

In table 16.2, p.511 of the textbook, the percentage of wind in the study period in the range of 3.500 to 6.499 knots in the direction of between azimuths of 315 and 325 is (answer format: two digits to the right of the decimal point with no "%" sign, e.g., 1.42)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-			Hourly O	le 16-2 T	hof tur	nd Data				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.77	4-6	7-10		tor wind :	Speed (Kne	7(s)			_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F	-	-	1-10	11-16			42		41	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y	460	043	-	D	(rection)		28-33	34-40	Over	Total
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					212	-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0	0	12	12	10000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1000		62		• 0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				10000	106						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					42			0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.000	84			0			1092
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					69				0		1175
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100.7	128				22	0	814
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10000							971
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			100000			10.0					877
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											1651
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(C		452					3779
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1200		129					3571
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						27					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						19					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			100000000000000000000000000000000000000			12					2079
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.000	100000		83	18				4496
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0		1.17.1		2211
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10000			0				2239
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1000	10,2001		147	8			1000	2078
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12.000				38				2253
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10000	10.000		192	0	0			2715
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1933.70		96	11	18			2775
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25		10000			102	21	9	0	0	243
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	2,2,2,1		1000		53	0	0	0	0	173
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	411	100,000	101 A 101 A	232	118	19	0	0	0	199
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	191	554	276	287	118	0	0	0	0	142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	271	642	548	479	143	17	0	0	0	210
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	379	873	526	543	208	34	0	0	0	256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	299	643	597	618	222	19	0	0	0	239
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	397	852	521	559	158	23	0	0	0	251
34 280 916 845 307 24 0 0 0 0 35 252 931 918 487 23 0 0 0 0 36 501 1568 1381 569 27 0 0 0 0 0 7729 0 0 0 0 0 0 0 0 0							0	0	0	0	156
35 252 931 918 487 23 0 0 0 0 36 501 1568 1381 569 27 0									0	0	23
36 501 1568 1381 569 27 0 <	20.0		10.000	0.00000						0	26
0 7729 0 0 0 0 0 0 0 0 0 0 0 0 0									0	0	40
1129 0 0 0 146 22 0						ST 1151				0	-17
JIAL: 21676 31828 19849 10437 3357 529 100 22 0	OTAL:	21676		19849	10437	- COL.2			5 22	0	878

Q(9): Don't have it, couldn't even open it, ITC crashed back then!!.

But not sure, it might be (c) though!! You will have to ask Dr. Faisal.

Question 1: (30 marks) - No groups for this question, entire class one group

Given an airport with one precision instrument runway. The ends of the runway centerline have the following coordinates (N: 15000', E: 15000') and (N: 24000', E: 11000'). The airport-established elevation is 760' above msl.

Determine the maximum height of a structure at a proposed construction site with the following coordinates (N: 9000', E: 6000', Z: 730' above msl) according to the FAA imaginary surfaces standards

Note: all coordinates in feet

We must find the coordinates of point (Q) to do this we first must find the angle ϕ :

 $\phi = \tan^{-1} \left(\frac{24,000 - 15,000}{15,000 - 11,000} \right) = 66.0375^{\circ}$ $E_Q = E_B + 200 \cos(\phi) = 15,000 + 200 \cos(66.0375) = 15,081.23 \, ft$ $N_Q = N_B - 200 \sin(\phi) = 15,000 - 200 \sin(66.0375) = 14,817.24 \, ft$

We must check the angle between the Runway CL and the line QP (to know if more or less than 90°):

 $90^o - \phi = 90^o - 66.0375^o = 23.9625^o$

 $\beta = \tan^{-1} \left(\frac{15,081.23 - 6000}{14,817.24 - 9000} \right) = 57.3573^{0}$ $\beta + (90 - \phi) = 57.3573 + 23.9625 = 81.32^{o} < 90$

Since the angle is $< 90^{\circ}$ the site point (P) might be in one of the following positions:

To determine which position, we must find the radius (R') which is the line QP:

 $R' = \sqrt{(15,081.23 - 6000)^2 + (14,817.24 - 9000)^2} = 10,784.67 \, ft$

 $10,000 < R' < 15,000 \Rightarrow$ The site Point (P) is within the **Conical Surface** for group 1

Group 2:

Since the angle between CL & $QP < 90^{\circ}$ the point might be in one of these positions:

In order to determine the exact position, we must find the component of QP parallel to CL and the component of QP perpendicular to CL:

 $QP_{\perp} = R' \sin(\beta + (90^{\circ} - \phi)) = 10,784.67 \sin(81.32^{\circ}) = 10,661.15 ft$ $QP_{\parallel} = R' \cos(\beta + (90^{\circ} - \phi)) = 10,784.67 \cos(81.32^{\circ}) = 1627.58 ft$

by similar triangles:

$$x = 1627.58 \left(\frac{7500}{50,000}\right) = 244.1365 \, ft$$

distance to boundary of Approach Surface = 244.1365 + 500 = 744.1365 ftdistance to boundary of Transitional Surface = 744.1365 + 5000 = 5744.1365 ft

744.1365 ft < 5744.1365 $ft < (QP_{\perp} = 10, 661.15$ $ft) \Longrightarrow$ P, is not within group 2

So, the site point (P) is only controlled by the conical surface of group1, and not limited by group 2:

 $Max\ height\ of\ structure = Max\ Elev.\ diff + Elev_{R.W} - Elev_P = 189.23 + 760 - 730 = 219.23\ ft$

Question 2: (10 marks)

Group D: Digit 5 and 6 from the left of students numbers 75 - 99 inclusive (e.g., 1171879) Table below provides the expected average number of aircrafts arrival per day for four category of aircrafts with expected mean time gate occupancy for each category; estimate the number of required gates according to European traffic.

Aircraft category	Average number of aircraft arrivals per hour	Mean time gate occupancy in minutes
A	3	45
В	17	55
С	20	65
С	25	75

$$n = m\left(\frac{Aircrafts}{hr}\right). q. t(hr)$$

 $q = \frac{3 + 17 + 20 + 25}{m} = \frac{65}{m}$

$$t = \frac{(3)(45) + (17)(55) + (20)(65) + (25)(75)}{(3) + (17) + (20) + (25)} = 65.308 \text{ min} = 1.088 \text{ hm}$$

 $n = m\left(\frac{65}{m}\right)(1.088) = 70.75 = 71 \ gates \ required$

Question 3: (20 marks)

Group C: Digit 5 and 6 from the left of students numbers 75 - 99 and 00-09 inclusive (e.g., 1171099)

Given a design B757 aircraft for runway length requirement (similar to table 18.1 & 18.2). The airport is at an elevation of 1000 meters and normal maximum temperature of the hottest month of the year is 28 degrees. Maximum operational take-off weight is 95000kg, and maximum operational landing weight is 195000lb. Determine the required runway length assuming the difference between the highest and lowest points on the runway centerline is 4.5 meters.

For Landing:

Max allowable landing weight = 89,800 kg

Available Landing weight = 195,000 lb = 88,450 Kg

 $W_{Avail} < W_{Max} \Longrightarrow (OK)$

					······································						
Temporobire	By Airport Elevation in Meters										
Temperature (°C)	0 m	500 m	1000 m	1500 m	2000 m	2500 m					
		Maxi	mum Allowable	Landing Weight	(1000 kg)						
.10	89.8	89.8	89.8	89.8	89.8	89.8					
12	89.8	89.8	89.8	89.8	89.8	89.8					
14	89.8	89.8	89.8	89.8	89.8	89.8					
16	89.8	89.8	-89.8	89.8	89.8	89.8					
18	89.8	89.8	89.8	89.8	89.8	89.8					
20	89.8	89.8	89.8	89.8	89.8	89.8					
22	89.8	89.8	89.8 .	89.8	89.8	89.8 -					
24	89.8	89.8	89.8	89.8	89.8	: 89.8					
26	89.8	89.8	898	89.8	89.8	89.8					
. 28	89.8	89.8	(89.8)	89.8	89.8	89.8					
30		(89.8)	89.8	89.8	89.8	89.8					
32	89.8	89.8	89.8	89.8	89.8	89.8					
34	89.8	89.8	89.8	89.8	89.8	89.8					
36	89.8	89.8	89.8	89.8	89.8	89.0					
38	89.8	89.8	89.8	89.8	.89.8	86.9					
40	89.8	89.8	89.8	89.8	89.8	84.9					
42	89.8	89.8	89.8	89.8	87.5	82.9					
44	89.8	89.8	89.8	89.8	85.2	81.0					

Table 18-1 Runway Length Table: Aircraft Performance, Landing (Boeing 757-232 Series) PW 2037 Engine, 25° Flaps

Runway Length for landing:

Airport Elev. = 1000 m = 3280 ft

 $3000 ft \Rightarrow 6.28$

 $4000 ft \Rightarrow 6.45$

 $3280 ft \implies ??$

Weight		•		By Airport Elevation in Feet					
(1000 lb)	0 ft	1000 ft	2000 ft	3000 ft	4000 ft	5000 ft	6000 ft	7000 ft	8000 f
		-		Runw	ay Length	(1000 ft)			
125	3.65	3.72	3.79	3.85	3.92	3.98	4.05	4.11	4.18
130	3.89	3.96	4.04	4.12	4.21	4.30	4.39	4.49	4.60
135	4.08	4.17	4.26	4.35	4.45	4.56	4.67	4.80	4.94
140	4.24	4.33	4.43	4.54	4.65	4.77	4.90	5.04	5.20
145	4.37	4.48	4.58	4.69	4.81	4.94	5.08	5.24	5.41
150	4.49	4.60	4.71	4.83 .	4.95	5.09	5.23	5.39	5.56
155	4.60	4.71	4.82	4.95	5.08	5.22	5.36	5.52	5.69
160	4.70	4.81	4.93	5.06	5.19	5.33	5.48	5.64	5.81
165	4.80	4.92	5.04	5.17	5.30	5.45	5.60	5.76	5.92
170	4.92	5.03	5.16	5.29	5.43	5.57	5.72	5.88	6.04
175	5.04	5.16	5.29	5.42	5.57	5.71	5.87	6.03	6.20
180	5.19	5.32	5.44	5.58	· 5.73	5.88	6.04	6.22	6.39
185	5.37	\$.50	5.63>	5.77	· 5.92	6.09	6.26	6:45	6.65
190	5.59	5.72	5.86	6.00	6.16	6.33	6.53	6.74	6.97
195	5.85	5.98	6.13	6.28	6.45	6.64	6.85	7.10	7.38
200	6.15	6.30	6.45	6.61	6.79	7.00	7.25	7.54	7.89

Interpolate

By interpolation:

R.W Length (Landing) = 6.33 (1000) = 6330 ft

For Take-off:

Max allowable Take - off weight = 108,900 kg

Available Take - off weight = 95,000 Kg

 $W_{Avail} < W_{Max} \Longrightarrow (OK)$

Temperature-	· . · ·	ada wa s	By Airport Ele	vation in Meters	·	
(°C)	0 m	500 m	1000 m	1500 m	2000 m	2500 1
8 . 8		Max	timum Allowable T	akeoff Weight ()	000 kg)	•
		· ·- ·- 108:9 · · · ·		-108:9	108:9	106:4
12	108.9	108.9	108.9	108.9	108.9	.104.9
14 .	108.9	108.9	108.9	108.9	108:8 · ·	
16	108.9	108.9	108.9	108.9	107.7	101.9
18	. 108.9	108.9	108.9	108.9	106.4	100.3
20	108.9	108.9	; 108,9	108.9	105.0	98.6
22	108.9	108.9	108.9	108.9	103.4	.97.0
24	108.9	108.9	108.9	107.9	101.7	
26	108.9	108.9	108.9	106.0	100.0	93.5
28 .	108.9	108.9	108.9	104.1	98.1	91:7
30	108.9	(108.9)	107.5	0 102.1	96.1	89.9
32	108.9	108.9	, 105.5	100.0	94.1	88.0
34	108.9	108.4	103.4	97.8	91.9	86.1
36	108.9	106.5	101.3	95.6	89.7	84.1
38	108.9	104.5	99.0	93.2	.87.4	82.1
40	104.5	106.5	967	90.8	85.1	80.0
42	105.3	99.9	94.1	88.3	.82.7	77.8
44	103.0	97.3	91.4	85.7	80.3	75.6

Table 18-2 Runway Length Table: Aircraft Performance, Takeoff (Boeing 757-232Series) PW 2037 Engine, <u>5° Flaps</u>

:

R = 63.8

lemper	aturė		By Airport El	evation in Meters	· · · · ·	
(°Ć)		500 m	1000 m	1500 m	2000 m	2500 m
	-		Referen	re Factor R	61	10000
10	52.1	54.8	58,2	52.7	68.5	76.1
12	52.2	54.7	58.2	62.9	69.1	77.0
14	· 52.3	54.8	58.3	63.2	69.8	78 2
16	52.4	54.9	58.6	63.7	70.6	79.6
18	52:6	55.2	59.0	64.4	71.7	81.2
20	52.8	55.6	59,6	65.3	72.9	82.9
22	53.1	56.2	60.4	66.3	74.4	84.9
24	53.5	56.8	61.4	67.6	76.0	, 87.2
26	53.9	57.6	62.5	69.1	78.0	89.6
28	54.5	58.6	63.8	70.8	80.1	92.4
30	55.1	(59.7)	65.4	72.8	82.6	95.3
32	56.0	61.0	, 67.1	75.0	* 85.3	98.5
34	56.9	62.4	1 69.0	77.5	88.3	102.0
36	58.0	64.0	° 71.2	80.2	91.6	105.8
38	. 59.3	65.7	73.6	83.3	95.2	109:9
40	60.7	67.7	76.2	86.6	99.1	. 114.2
42	62.4	69.8	₹ 79.0	90.2	103.4	118.8
44	64.2	72.1	\$ 82.1	94.1	108.1	123.8

Runway Length for Take-off:

 $60 \Rightarrow 2205 m$

 $70 \Rightarrow 2599 m$

$63.8 \Rightarrow ??$

Weight		2 Runwa Si	eries) PW	Run	ne, 5° Flap way Length	s (Continue	ed)	757-232	
1000 kg) 70	60 1247	70	80	90 R	eference Fa 100	ctor R 110			
75 80 85 90 95 100 102 102	1247 1409 1581 1769 1975 2205 2462 2750 3074	1438 1630 1838 2067 2319 2599 2912 3261 3650	1617 1843 2096 2377 2685 3022 3388 3782	1786 2048 2350 2688 3056 3451 3868 4301	1951 2249 2599 2990 3414 3864 4330 4804	2114 2448 2837 3271 3742 4239 4754 5276	120 2279 2646 3062 3522 4021 4554 5117	130 2451 2846 3271 3731 4234 4788 te Windo	140 2632 3051 3460 3888 4364 4917

By interpolation

R.W Length (Take-off) = 2355 m = 7725 ft (Controls)

Since the Take-off R.W Length controls, we must take the gradient effect into consideration:

Max difference in CL Elev = 4.5 m = 14.76 ft

R.W Length = 7725 + 10(14.76) = 7873 ft

Question 4: (5 marks)

Group E: Last two digits of students numbers 80 - 99 inclusive (e.g., 1171290)

Given the fetch of 21km, wind velocity 80km/h and mean water depth of 6 meters at an inland lake, determine the maximum wave height

 $H_{max}(ft) = 0.17\sqrt{U(mph)F(miles)}$

$$U = 80 \frac{km}{hr} = 49.71 mph$$

 $F = 21 \ km = 13.049 \ statute \ miles$

 $H_{max} = 0.17\sqrt{(49.71)(13.049)} = 4.33 \, ft$