Part-1 :
Q(1):
I don't have the exact question, but it was something like this:
What makes airplanes go up (fly)?
Answer:
Due to the difference in the air speed above and below the wing of the airplane, where the speed above is higher than below, creating less pressure above the wing as compared to the pressure below. The difference in pressure creates uplift force.

Q(2):

What is the minimum runway blast pad width in meters for a design aircraft C-IV (answer format: one digit to the right of the decimal point, e.g. 255.0)

Answer: 60.0

Whble $88-5$ Eunway Design-aud Separation Standards for \bar{A} incrafi A ppoach Categori

Itern	Airplane Design Group					
	1	II	III	IV	V	VI
Runway Width	100 ft	100 ft	100 ft	150 ft	150 ft	200 ft
	30 m	30 m	30 m	45 m	45 m	60 п
Runway Shqulder Width	10 ft	10 ft	(20)	25 ft	35 n	40 ft
	3 m	$\therefore 3 \mathrm{~m}$	6 m .	7.5 m	10.5 m .	12 n
Runway Blast Pad Width	120 ft	$\therefore 120 \mathrm{ft}$	- 140 ft .	200 ft	. 22.0 ft	280 ft
	36 m	36 m	42 m	60 m	66 mi	84 m
Runway Blast Pad Length	100 ft	150 ft	200 ft	200 ft	400 ft	400 ft
	30 m	45 mm .	60 m	60 m .	120 m	12.0 n
Runway Safety Area Widh	500 ft	500 ft	- 500 ft	500 ft	. 500 ft	500 ft
	. 150 m	150 n				
Runway Safety Area Length	$1,000 \mathrm{ft}$	1,000 ft	1,000 ft	$1,000 \mathrm{ft}$	t,000 ft	1,000 fi
Beyond RW End	300 m	300 n				
Runway Object Free Area	800 ft	800 fl				

Q(3):

What is the minimum length of vertical curve in meters for a design aircraft D-IV given the tangents at the PVI are minus 0.75% and plus 0.75% (answer format: whole numbers without decimal point and rounded to a whole number, e.g. 175)

Answer: 450

Minimum distance between change in grade $=1000^{\prime}(300 \mathrm{~m}) \cdot$ sum of grade changes (in percent) \Leftrightarrow Minimum length of vertical curves $=1000^{\prime}(300 \mathrm{~m}) \cdot$ grade change (in percerti.-

Figure 18-3b Longitudinal grade limitations for aircraft approach categories C and D . (Source: Airport Design, FAA Advisory Circular 150/5300-13, Changes 1-4, September 29,1989 .)

$$
\min \text { Length of Vertical Curve }=300(0.75+0.75)=450 \mathrm{~m}
$$

Q(4):

Give the magnetic azimuth of single runway is 76 , what are runway numbers of this runway for each of the two ends of runway (answer format: whole numbers with no decimal point and symbol and " $\&$ " between the two numbers with no spaces before or after the " $\&$ ", e.g., 2\&13)

Answer: 8 \& 26
$76 \approx 80$ (Rounded to nearest 10$)$
First Number $=\frac{80}{10}=8$
Second Number $=8+18=26$

Q(5):

What is the required runway length of a design aircraft of Beech B99 at location with elevation at sea level and mean daily maximum temperature of the hottest month of the year is 95 degree Fahrenheit (answer in whole numbers without decimal point and rounded to upper/higher 100ft, e.g. 2200)

Q(6):

Given expected daily traffic in the table below, determine the IFR hourly capacity for runway configuration number 4 in table 16.3, p. 519 in the textbook (answer format: whole number without decimal point, e.g., 98)
Air craft type Expected typical daily number of aircrafts Class A: Small single -engine aircrafts $12,5001 \mathrm{lb}$ less 40 Class B: Small multiengine aircrafts, 12,5001b or less and learjets 60 Class C: large aircrafts, $12,5001 \mathrm{lb}$ 300,0001b up to 30 Class D: heavy aircraft, more than $300,0001 \mathrm{lb}$ 20
Answer: 56

$$
\begin{aligned}
& \% \mathrm{C}=\frac{80}{40+60+80+20} * 100 \%=40 \% \\
& \% \mathrm{D}=\frac{20}{40+60+80+20} * 100 \%=10 \%
\end{aligned}
$$

$$
\text { Mix Index }=\% C+3(\% D)=40+3(10)=70
$$

Table 16-3 Airport Capacities for Long-Range Planning Purpose

Q(7):

Airport demand for passenger transfers depends mainly ona. Population and level of educationb. Population and production of goodsc. Population and being a hub airport
(O) d. Using the airport as a hub airport by airlinese. Population and economic character

But not sure, it might be (c) though!! You will have to ask Dr. Faisal.

Q(8):

In table 16.2, p. 511 of the textbook, the percentage of wind in the study period in the range of 3.500 to 6.499 knots in the direction of between azimuths of 315 and 325 is (answer format: two digits to the right of the decimal point with no "\%" sign, e.g., 1.42)

Answer:
0.97

$\mathbf{Q (9) : ~ D o n ' t ~ h a v e ~ i t , ~ c o u l d n ' t ~ e v e n ~ o p e n ~ i t , ~ I T C ~ c r a s h e d ~ b a c k ~ t h e n ! ! . ~}$

Question 1: (30 marks) - No groups for this question, entire class one group

Given an airport with one precision instrument runway. The ends of the runway centerline have the following coordinates ($\mathrm{N}: 15000^{\prime}, \mathrm{E}: 15000^{\prime}$) and ($\mathrm{N}: 24000^{\prime}, \mathrm{E}: 11000^{\prime}$). The airportestablished elevation is 760^{\prime} above msl .

Determine the maximum height of a structure at a proposed construction site with the following coordinates ($\mathrm{N}: 9000^{\prime}, \mathrm{E}: 6000^{\prime}, \mathrm{Z}: 730^{\prime}$ above msl) according to the FAA imaginary surfaces standards
Note: all coordinates in feet

For Group 1:

We must find the coordinates of point (Q) to do this we first must find the angle ϕ :

$\phi=\tan ^{-1}\left(\frac{24,000-15,000}{15,000-11,000}\right)=66.0375^{\circ}$
$E_{Q}=E_{B}+200 \cos (\phi)=15,000+200 \cos (66.0375)=15,081.23 \mathrm{ft}$
$N_{Q}=N_{B}-200 \sin (\phi)=15,000-200 \sin (66.0375)=14,817.24 \mathrm{ft}$
We must check the angle between the Runway CL and the line QP (to know if more or less than 90°):

$90^{\circ}-\phi=90^{\circ}-66.0375^{\circ}=23.9625^{\circ}$
$\beta=\tan ^{-1}\left(\frac{15,081.23-6000}{14,817.24-9000}\right)=57.3573^{0}$
$\beta+(90-\phi)=57.3573+23.9625=81.32^{\circ}<90$
Since the angle is $<90^{\circ}$ the site point (P) might be in one of the following positions:

To determine which position, we must find the radius (R^{\prime}) which is the line QP:
$R^{\prime}=\sqrt{(15,081.23-6000)^{2}+(14,817.24-9000)^{2}}=10,784.67 \mathrm{ft}$
$10,000<R^{\prime}<15,000 \Rightarrow$ The site Point (P) is within the Conical Surface for group 1

Group 2:

Since the angle between CL \& $\mathrm{QP}<90^{\circ}$ the point might be in one of these positions:

In order to determine the exact position, we must find the component of QP parallel to CL and the component of QP perpendicular to CL:
$Q P_{\perp}=R^{\prime} \sin \left(\beta+\left(90^{\circ}-\phi\right)\right)=10,784.67 \sin \left(81.32^{\circ}\right)=10,661.15 \mathrm{ft}$
$Q P_{\|}=R^{\prime} \cos \left(\beta+\left(90^{\circ}-\phi\right)\right)=10,784.67 \cos \left(81.32^{\circ}\right)=1627.58 \mathrm{ft}$

by similar triangles:
$x=1627.58\left(\frac{7500}{50,000}\right)=244.1365 \mathrm{ft}$
distance to boundary of Approach Surface $=244.1365+500=744.1365 \mathrm{ft}$ distance to boundary of Transitional Surface $=744.1365+5000=5744.1365 \mathrm{ft}$

$744.1365 \mathrm{ft}<5744.1365 \mathrm{ft}<\left(Q P_{\perp}=10,661.15 \mathrm{ft}\right) \Rightarrow P$, is not within group 2

So, the site point (P) is only controlled by the conical surface of group1, and not limited by group 2 :

Primary Surface

Horizontal Surface
Conical Surface

Max Elev.Difference $=150+\frac{10,784.67-10,000}{4000}=189.23 \mathrm{ft}$
Max height of structure $=$ Max Elev. diff + Elev $_{R . W}-$ Elev $_{P}=189.23+760-730=219.23 \mathrm{ft}$

Question 2: (10 marks)

Group D: Digit 5 and 6 from the left of students numbers 75-99 inclusive (e.g., 1171879)
Table below provides the expected average number of aircrafts arrival per day for four category of aircrafts with expected mean time gate occupancy for each category; estimate the number of required gates according to European traffic.

Aircraft category	Average number of aircraft arrivals per hour	Mean time gate occupancy in minutes
A	3	45
B	17	55
C	20	65
C	25	75

$n=m\left(\frac{\text { Aircrafts }}{h r}\right) \cdot q \cdot t(h r)$
$q=\frac{3+17+20+25}{m}=\frac{65}{m}$
$t=\frac{(3)(45)+(17)(55)+(20)(65)+(25)(75)}{(3)+(17)+(20)+(25)}=65.308 \mathrm{~min}=1.088 \mathrm{hr}$
$n=m\left(\frac{65}{m}\right)(1.088)=70.75=71$ gates required

Question 3: (20 marks)

Group C: Digit 5 and 6 from the left of students numbers 75 - 99 and 00-09 inclusive (e.g., 1171099)

Given a design B757 aircraft for runway length requirement (similar to table 18.1 \& 18.2). The airport is at an elevation of 1000 meters and normal maximum temperature of the hottest month of the year is 28 degrees. Maximum operational take-off weight is 95000 kg , and maximum operational landing weight is 195000 lb . Determine the required runway length assuming the difference between the highest and lowest points on the runway centerline is 4.5 meters.

For Landing:
Max allowable landing weight $=89,800 \mathrm{~kg}$
Available Landing weight $=195,000 \mathrm{lb}=88,450 \mathrm{Kg}$

$$
W_{\text {Avail }}<W_{\text {Max }} \Rightarrow(O K)
$$

Rable 18-1 Runway Length Table: Aircraft Performance, Landing (Boeing 757-232) Series) PW 2037 Engine, 25° Ftaps

Temperature$\left({ }^{\circ} \mathrm{C}\right)$	By Airport Elevation in Meters						
	0 m	500 m	1000 m	1500 m	2000 m		2500 m
.-	Maximum Allowable Landing Weight (1000 kg)						
.10	89.8	89.8	89.8	89.8	89.8		89.8
12	89.8	89.8	89.8	89.8	89.8		89.8
14	89.8	89.8	89.8	89.8	89.8		89.8
16	89.8	89.8	. 89.8	89.8	89.8		89.8
18	89.8	89.8	89.8	89.8	89.8		89.8
20	89.8	89.8	89.8	89.8	89.8		89.8
22	89.8	89.8	89.8	89.8	89.8		89.8
24	89.8	89.8	89.8	89.8	89.8	:	89.8
26	89.8	89.8	898	89.8	89.8		89.8
28	89.8	89.8	(89.8)	89.8	89.8		89.8
30	-89.8	-89.8	89.8	89.8	89.8		89.8
32	89.8	89.8	89.8	89.8	89.8		89.8
34	89.8	89.8	89.8	89.8	89.8		89.8
36	89.8	89.8	89.8	89.8	89.8		89.0
38	89.8	89.8	89.8	89.8	. 89.8		86.9
40	89.8	89.8	89.8	89.8	89.8		84.9
42	89.8	89.8	89.8	89.8	87.5		82.9
44	89.8	89.8	89.8	89.8	85.2		81.0

Runway Length for landing:
Airport Elev. $=1000 \mathrm{~m}=3280 \mathrm{ft}$
$3000 f t \Rightarrow 6.28$
$4000 \mathrm{ft} \Rightarrow 6.45$
$3280 f t \Rightarrow$?

By Airport Elevation in Feet

$\begin{aligned} & \text { Weight } \\ & (1000 \mathrm{lb}) \end{aligned}$	By Airport Elevation in Feet								
	0 ft	1000 ft	2000 ft	3000 ft	4000 ft	5000 ft	6000 ft	7000 ft	8000 ft
				Runw	y Length	$1000 \mathrm{ft})$			
125	3.65	3.72	3.79	3.85	3.92	3.98	4.05	4.11	4.18
130	3.89	3.96	4.04	4.12	4.21	4.30	4.39	4.49	4.60
135	4.08	4.17	4.26	4.35	4.45	4.56	4.67	4.80	4.94
140	4.24	4.33	4.43	4.54	4.65	4.77	4.90	5.04	5.20
145	4.37	4.48	4.58	4.69	4.81	4.94	5.08	5.24	5.41
150	4.49	$4.60{ }^{\circ}$	4.71	4.83	4.95	5.09	5.23	5.39	5.56
155	4.60	4.71	4.82	4.95	5.08	5.22	5.36	5.52	5.69
---160--	4.70	4.81	4.93	5.06	5.19	5.33	5.48	5.64	5.81
. 165	4.80	4.92	5.04	5.17	5.30	5.45	5.60	5.76	5.92
170	4.92	5.03	5.16	5.29	5.43	5.57	5.72	5.88	6.04
175	5.04	5.16	5.29	5.42	5.57	5.71	5.87	6.03	6.20
180	5.19	5.32	5.44	5.58	5.73	5.88	6.04	6.22	$6.39{ }^{\circ}$
185	5.37	550	$5.63)$	5.77	5.92	6.09	6.26	6:45	6.65
190	5.59	5.72	5.86	6.00	6.16	6.33	6.53	6.74	6.97
195	5.85	5.98	6.13	6.28	6.45	6.64	6.85	7.10	7.38
200	6.15	6.30	6.45	6.61	6.79	7.00	7.25	7.54	7.89

Interpolate

By interpolation:
R.W Length $($ Landing $)=6.33(1000)=6330 \mathrm{ft}$

For Take-off:
Max allowable Take - off weight $=108,900 \mathrm{~kg}$
Available Take - off weight $=95,000 \mathrm{Kg}$

$$
W_{\text {Avail }}<W_{\text {Max }} \Rightarrow(O K)
$$

'Table 18-2 Runway Length Table: Aircraft Performance, Takeoff (Boeing 757-232 Scries) PW 2037 Engine, 5° Elaps

Reference Factor (R):
$R=63.8$

temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	Ry Aimort Elevation in Meters					
	0 m	500 m	1000 m	1500 m	2000 m	2500 m
	Referepre Fartor R					
10	52.1	54.8	59.2	52.7	68.5	761
12	52.2	54.7	58.2	62.9	69.1	77.0
14	- 52.3	54.8	58.3	63.2	69.8	782
10	52.4	54.9	58.06	63.7	$70.0{ }^{\text {\% }}$	79.6
18	52:6	55.2	59.0	64.4	71.7	81.2
20	52.8	55.6	59,6	65.3	72.9	82.9
22	53.1	56.2	60.4	66.3	74.4	84.9
24	53.5	56.8	61.4	67.6	76.0	87.2
26	53.9	57.6	62.5	69.1	78.0	89.6
28	54.5	58.6	63.8)	70.8	80.1	92.4
30	55.1	(592)	65.4	72.8	82.6	95.3
32	56.0	61.0	- 67.1	75.0	85.3	98.5
34	56.9	62.4	- 69.0	77.5	88.3	102.0
36	58.0	64.0	\% 71.2	80.2	91.6	105.8
38	59.3	65.7	\%: 73.6	83.3	95.2	-109:9
40	60.7	67.7	* 7\%.	86.6	99.1	114.2
42	62.4	69.8	F 79.0	90.2	103.4	-118.8
44	64.2	72.1	82.1	94.1	108.1	123.8

Runway Length for Take-off:
$60 \Rightarrow 2205 m$
$70 \Rightarrow 2599 m$

$$
63.8 \Longrightarrow \text { ? ? }
$$

$\begin{aligned} & \text { Wcight } \\ & (1000 \mathrm{~kg}) \end{aligned}$	Table 1	18-3. The FAA Airport Reference Code 551 Runway Length Table: Aircraft Performance, Takeoff (Boeing 757-232 Series) PW 2037 Engine, 5^{\prime} Flaps (Continued)							
		Runway Length in Meters							
	60	70	$80 \quad 90$ Reference Factor R						
70	1247	1438		90	100	110	120		
75	1409	1630	1617	1786	1951		120	130	140
80	1581	1838	1843 2096	2048	2249	2114 2448	2279	2451	2632
85	1769	2067	2096	2350	2599	2837	2646 3062	2846	3051
90	1975	2319	2377 2685	2688	2990	2837 3271	3062	3271	3460
25	2205	2599	2685	3056	3414	3742	3522 4021	3731	3888
$\frac{100}{105} 102$110	2462	2912	3022	3451	3864	4239	4021	4234	4364
	2750			3868	4330	4754	5117	288	4917
	3074	3650	3782	4301	4804	5276	Acti	Wi	
		3650	4207	4748					

By interpolation
R.W Length (Take-off) $=2355 \mathrm{~m}=7725 \mathrm{ft}$ (Controls)

Since the Take-off R.W Length controls, we must take the gradient effect into consideration:
Max difference in CLElev $=4.5 \mathrm{~m}=14.76 \mathrm{ft}$
R. W Length $=7725+10(14.76)=7873 \mathrm{ft}$

Question 4: (5 marks)

Group E: Last two digits of students numbers 80 - 99 inclusive (e.g., 1171290)

Given the fetch of 21 km , wind velocity $80 \mathrm{~km} / \mathrm{h}$ and mean water depth of 6 meters at an inland lake, determine the maximum wave height
$H_{\max }(f t)=0.17 \sqrt{U(m p h) F(\text { miles })}$
$U=80 \frac{\mathrm{~km}}{\mathrm{hr}}=49.71 \mathrm{mph}$
$F=21 \mathrm{~km}=13.049$ statute miles
$H_{\max }=0.17 \sqrt{(49.71)(13.049)}=4.33 \mathrm{ft}$

